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Abstract. Holographic imaging poses significant challenges when facing real-time disturbances introduced by
dynamic environments. The existing deep-learning methods for holographic imaging often depend solely on
the specific condition based on the given data distributions, thus hindering their generalization across multiple
scenes. One critical problem is how to guarantee the alignment between any given downstream tasks and
pretrained models. We analyze the physical mechanism of image degradation caused by turbulence and
innovatively propose a swin transformer-based method, termed train-with-coherence-swin (TWC-Swin)
transformer, which uses spatial coherence (SC) as an adaptable physical prior information to precisely align
image restoration tasks in the arbitrary turbulent scene. The light-processing system (LPR) we designed
enables manipulation of SC and simulation of any turbulence. Qualitative and quantitative evaluations
demonstrate that the TWC-Swin method presents superiority over traditional convolution frameworks and
realizes image restoration under various turbulences, which suggests its robustness, powerful generalization
capabilities, and adaptability to unknown environments. Our research reveals the significance of physical
prior information in the optical intersection and provides an effective solution for model-to-tasks alignment
schemes, which will help to unlock the full potential of deep learning for all-weather optical imaging across
terrestrial, marine, and aerial domains.
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1 Introduction
Holographic imaging is an interdisciplinary field that combines
optics, computer science, and applied mathematics to generate
holographic images using numerical algorithms. Although the
concept of using computers to generate holograms can be traced
back to the 1960s, it was not until the emergence of digital
imaging and processing techniques in the 1990s that computa-
tional holography began to develop into a viable technology.1,2

In the 1990s, digital holography started to gain more attention
due to advancements in computer technology and digital image
processing.3 In recent years, holographic imaging has continued
to advance, with new research and technology enabling even

more sophisticated holographic imaging capabilities. Researchers
have developed increasingly sophisticated numerical algorithms
for holographic imaging, such as compressive sensing, sparse
coding, and deep-learning techniques.4–10

Spatial coherence (SC) is a critical factor that determines the
quantity and quality of high-frequency information carried by
the light beam in holographic imaging. High-frequency infor-
mation is crucial for achieving high resolution and capturing
fine details in an image. When the SC of the light source is
low, the phase relationship of the beam becomes chaotic, caus-
ing the interference pattern to be washed out and resulting in
insufficient transmission of high-frequency information. As a
result, the reconstructed image has a lower resolution and less
fine-detail information, as the high-frequency information
needed to capture these details has been lost. Therefore, high*Address all correspondence to Daomu Zhao, dmz123@zju.edu.cn
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SC light is preferred for holographic imaging to ensure that suf-
ficient high-frequency information is present in the interference
pattern and the hologram, resulting in high-resolution and de-
tailed reconstructed images. However, the SC of light sources
is often very low in complex scenes, which leads to image deg-
radation and loss of details. Therefore, how to restore images
under low-SC light sources is a challenging issue.11–15

Oceanic and atmospheric turbulence may profoundly influ-
ence optical imaging, engendering distortions and deterioration
in photographs acquired through cameras and alternative optical
detection devices. The distortion and degradation of images
caused by oceanic turbulence occur because the turbulent mo-
tions in the water column cause variations in the refractive index
of the water, which in turn leads to variations in the path of light
as it travels through the water. Atmospheric turbulence occurs
because the Earth’s atmosphere is not uniform and contains
regions of varying temperature and density, which can cause
variations in the refractive index of the air. Whether it is oceanic
turbulence or atmospheric turbulence, as the beam passes
through these regions of varying refractive index, phase corre-
lation changes, and the SC is distorted, causing the image to
become blurred and distorted, or even completely lost. Massive
efforts were devoted to finding a solution for imaging in various
turbulences.16–23 There is no denying the fact that it is difficult to
use the same methods to simultaneously resolve holographic
imaging problems with low-SC scenes and multiple intensities
of turbulence. Although low-SC and turbulence may not appear
to be correlated at first glance, their influence on computational
holography can both be described through the concept of SC. As a
result, we can transform the aforementioned issues into the imag-
ing problem of different SCs and leverage the advantages of deep
learning to train a generalized model that can achieve image
restoration for any turbulence intensity and low SC.

Artificial intelligence for optics has unparalleled advantages,
especially in the field of holography. For example, deep learning
can address challenging inverse problems in holographic imag-
ing, where the objective is to recover the original scene or object
properties from observed images or measurements and enhance
the resolution of optical imaging systems beyond their traditional
diffraction limit,24–30 etc. Intersection research of optics and deep
learning aims to solve massive tasks with one model, and one
important problem is how to guarantee the alignment between
the distribution of any given downstream data and tasks with pre-
trained models. This means that the same model and weights can
only be applied to a specific environment. Our research uses SC
as adaptable real-time physical prior information to precisely
align any scenes with pretrained models. By combining the most
advanced deep-learning algorithms, residual network,31 and swin
transformer,32 we proposed our deep-learning-based methodol-
ogy, termed as train-with-coherence-swin (TWC-Swin) method.
It can achieve the restoration of computational holographic im-
aging under any low SC and turbulence.

We summarize the innovations of this paper as follows.

(1) We designed an LPR to simultaneously acquire two
outputs: computational holographic imaging results and corre-
sponding interference fringes under different SCs and turbulent
scenes [Fig. 1(a)]. We manipulated SC by changing the distance
between lens 1 and the rotating diffuser (RD). The SC can be
calculated using the obtained interference fringes, while the im-
aging results serve as training and testing data for the neural
network. In our experiment, we employed partially coherent

light as the light source and loaded the turbulence phase using
a spatial light modulator (SLM) with a loading frequency of
20 Hz. The original data sets consist of natural images charac-
terized by complex elements and low sparsity, rather than simple
symbols or letters.

(2) The core of the TWC-Swin method is a swin adapter and
swin-model network [Fig. 1(b)]. The swin adapter can select the
optimal model from the model space by obtaining SC. The ar-
chitecture of the swin model in model space is the same; only
the weights are different [Figs. 1(c) and 1(d)]. Table S1 in the
Supplementary Material provides the correspondence between
SC and swin-model space. These weights are obtained by net-
work training at different SCs. Our swin model utilizes the swin-
transformer algorithm and incorporates local–global convolution
residuals to construct its architecture. Additionally, the prepro-
cessing and postprocessing modules are exclusively based on
convolutions. The detailed internal architecture of the swin model
is shown in Fig. S1 in the Supplementary Material. Compared to
the convolutional neural network and pure swin-transformer
frameworks, the swin model exhibits superior performance. In
addition, the TWC-Swin method takes about 28 ms to process
a picture, which can achieve real-time video-level restoration.

(3) Our model was only trained on different SCs and per-
formed well on turbulence data, despite not being trained on
such data. We can effectively restore holographic images under
various turbulent scenes using a swin adapter. This suggests
that our method has strong generalization capability and learned
universal features of image degradation and restoration during
training that are applicable beyond the specific conditions of
the training data.

(4) Our strategy for training neural networks with SC as the
physical prior information is applicable to arbitrary neural net-
works not limited to the swin model. It showcases the advantage
of “transferability,” meaning that it can be transferred or applied
effectively across different neural network architectures and tasks.
Moreover, we achieve model-to-task alignment using physical
principles and demonstrate the strategy’s ability to incorporate
physical principles into the learning process, which can be par-
ticularly beneficial for tasks involving physical data or phenom-
ena. This lends a degree of interpretability to the model, as it
leverages known physical principles to inform its predictions.

2 Materials and Methods

2.1 Scheme of the LPR

Figure 1(a) shows the LPR. The high-coherence light source
generated by the solid-state laser (CNI, MLL-FN, 532 nm) is
polarized horizontally after passing through a half-wave plate
and a polarization beam splitter, allowing it not only to match
the modulation mode of the SLM but also to adjust the beam
intensity. The RD (DHC, GCL-201) is used to reduce the SC
of the light source, with the degree of reduction depending
on the radius of the incident beam on the RD—the larger the
radius is, the lower the SC of the output light source is (see
Note 2 in the Supplementary Material). In the experiment,
we control the incident beam radius by adjusting the distance
between lens 1 (L1, 100 mm) and the RD. After being colli-
mated by lens 2 (L2, 100 mm), the beam is incident on the
SLM1 (HDSLM80R) loaded with turbulent phase, which is
continuously refreshed at a rate of 20 Hz. After passing through
the turbulence, the beam is split into two parts by a beam splitter.
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Fig. 1 Principle and performance of TWC-Swin method. (a) LPR. SC modulation can adjust the
SC by changing the distance D. Holographic modulation is used to load the phase hologram. The
LPR generates two outputs, one for calculating SC and the other for network input. HWP, half-
wave plate; PBS, polarized beam splitter; L, lens; RD, rotating diffuser; SLM, spatial light modu-
lator; F, filter. D, distance between L1 and RD. (b) The detailed flow of the TWC-Swin method. The
swin adapter can select the optimal model from the model space by obtaining SC. The color pic-
ture represents a case in progress. (c) Swin-model space and architecture of the swin model. The
architecture of M1 −M11 is the same; only the weights are different. The weights are obtained by
network training at different distances. (d) The correspondence between SC and swin-model
space. See Table S1 in the Supplementary Material for detailed data. (e) Inputs and outputs of
the swin model with different SCs. (f) SSIM and PCC of swin-model outputs at different SCs.
(g) Training and test data acquisition process. The training data did not contain any turbulence.
(h) SSIM and PCC of swin-model outputs at different turbulent scenes.
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The first part employs Michelson interference to capture inter-
ference fringes and measure the SC of the light. The second part
is used for holographic imaging, with the phase hologram of the
image loaded onto the SLM2 (PLUTO). The high-pass filter is
employed to filter out the unmodulated zero-order diffraction
pattern, and the final imaging result is captured by the comple-
mentary metal–oxide-semiconductor (CMOS, Sony, E3ISPM).
In summary, we control the SC of the light source by adjusting
the distance between lens L1 and the RD. We simulate a turbu-
lent environment using the SLM1, with the intensity of the tur-
bulence depending on the loaded turbulent phase. If turbulence
is not required, the SLM1 can be turned off, and it functions as a
mirror equivalent.

2.2 Oceanic Turbulence and Atmospheric Turbulence

The turbulence intensity in the experiment is determined by the
spatial power spectrum of the turbulence. The function of the
spatial power spectrum of the turbulent refractive-index fluctu-
ations used in this paper is based on the assumption that turbu-
lence is homogeneous and isotropic. We use the Nikishov power
spectrum to describe oceanic turbulence:33

8>>><
>>>:

ΦnðκÞ ¼ 0.388× 10−8ε−1∕3κ−11∕3½1þ 2.35ðκηÞ2∕3�fðκ;ω;χtÞ
fðκ;ω;χtÞ ¼ χt½expð−ATδÞ þω−2 expð−ASδÞ

− 2ω−1 expð−ATSδÞ�
δ¼ 8.248ðκηÞ4∕3 þ 12.978ðκηÞ2

;

ð1Þ

where κ is the spatial wavenumber of turbulent fluctuations,

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2x þ κ2y þ κ2z

q
. ε is the dissipation rate of turbulent

kinetic energy per unit mass. η ¼ 10−3 m is the Kolmogorov
microscale (inner scale). ω is the index of the relative strength
of temperature and salinity fluctuations. AT ¼ 1.863 × 10−2,
AS ¼ 1.9 × 10−4, and ATS ¼ 9.41 × 10−3. χt stands for a variate
that represents the rate of dissipation of mean-square tempera-
ture, which varies from 10−10 K2∕s in deep water to 10−4 K2∕s
in surface water. We only changed the oceanic turbulence inten-
sity by adjusting χt; the greater the value of χt is, the stronger
the oceanic turbulence is. Detailed parameter settings for the
power spectrum of oceanic turbulence can be found in Table S2
in the Supplementary Material.

For atmospheric turbulence, we use the non-Kolmogorov
power spectrum,34
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n
expð−κ2∕κ2mÞ
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0
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2π
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Γ
�
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2

�
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κm ¼ cðαÞ
l0

κ0 ¼ 2π
L0

; ð2Þ

where α is the refractive index power spectral density power
law. l0 and L0 represent inner and outer scales, respectively.
C2
n denotes the refractive index structure constant. We only

changed the atmospheric turbulence intensity by adjusting C2
n;

the greater the value of C2
n is, the stronger the atmospheric tur-

bulence is. Detailed parameter settings for the power spectrum

of atmospheric turbulence can be found in Table S2 in the
Supplementary Material. After setting reasonable parameters
and returning to the space domain through the inverse Fourier
transform, the turbulent phase can be obtained, which will be
input into SLM1 to simulate the turbulent scene.

2.3 Data Acquisition

Low SC and turbulence are different physical scenarios, but
the influence of these scenarios on holographic imaging can be
described through SC. Based on the above method, we only use
the data obtained under different SCs for model training, and
any other data are used for testing [Fig. 1(g)]. The process of
data acquisition is as follows.

(1) For low-SC data sets, we do not consider turbulence, turn
off SLM1, and only adjust the SC of the light source by chang-
ing the distance between lens L1 and the RD. The initial dis-
tance is the focal length of lens L1 and the rotation speed of
the diffuser is 200 r/min.

(2) The original image generates phase holograms through
the iterative Gerchberg–Saxton algorithm35 and loads them into
the SLM2 sequentially. The imaging results are captured by
CMOS1, and CMOS2 captures the interference fringes and
calculates the degree of coherence.

(3) After all the data are captured, we increase the distance
between L1 and RD. Each increment is 0.1 times the focal
length of L1, and we keep the rotation speed of the diffuser
constant and then repeat step 2.

(4) For the turbulence data set, the random turbulence phase
generated by the simulation was loaded into SLM1 at a fre-
quency of 20 Hz, and the distance between L1 and RD was kept
as the focal length of L1. We input the phase hologram into
SLM2. CMOS2 captures the interference fringes and CMOS1
captures 500 images. The final imaging result can be obtained
by weighting and averaging these images.

(5) We change the intensity and type of turbulence loaded on
SLM1 and then repeat step 4.

Our original images consist of public data sets, such as the
Berkeley segmentation data set (BSD),36 Celebfaces attributes
high-quality data set (CelebA),37 Flickr data set (Flickr),38

Webvision data set (WED),39 and DIV2k data set (DIV).40 The
training set is only composed of images captured by CMOS1 in
steps 2 and 3.

In the training phase, we divide the training data into 11
groups based on SC and send them to the network for training
in turn. Therefore we can obtain a model space containing swin
models with different weights. In the testing phase, the swin
adapter is a program that needs to receive the SC information
of the light source and selects the optimal model in model space
to achieve the image restoration task. Here we set to distance
priority mode, and the swin adapter will select the weight
parameter closest to the measured SC. The test set comes from
the images generated in steps 4 and 5. Note that none of the test
sets have been trained; they are blinded to the network. Our
model was implemented using PyTorch; the detailed architec-
ture can be found in Note 1 in the Supplementary Material.
We use adaptive moment estimation with weight decay
(AdamW) as optimizer,41 which is utilized to update the weights
with initial learning rates of 0.0005 with a 50% drop every 10
epochs. The total epoch is 100. Mean-squared error (MSE) is the
loss function of the network. All training and testing stages are
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placed on the NVIDIA GTX3080Ti graphics card, and a full
training period takes about 12 h. To effectively verify the per-
formance of our method, a series of credible image quality as-
sessment measures were applied. The full-reference measures
include peak signal-to-noise ratio (PSNR), structural similarity
index (SSIM), and Pearson correlation coefficient (PCC), which
are used to provide an assessment of a single image in relation to
perceived visual quality. See Note 4 in the Supplementary
Material for descriptions of evaluation indices.

3 Results and Discussion
This section primarily showcases the performance of our
method under various SCs and turbulent scenes. We simulated
different strengths of oceanic and atmospheric turbulence,

enhancing the diversity of turbulence intensities and types.
Additionally, we conducted comparative analyses with tradi-
tional convolutional-residual networks and performed ablation
studies to reinforce the validity and efficiency of our proposed
method. It is important to emphasize that our training data
exclusively consisted of holographic imaging results obtained
under different SC conditions, with none of the test data used
during the training phase.

3.1 Performance on Low SC

Figures 2 and 1(e) show the original images captured by
CMOS1 and restored images processed by the TWC-Swin
method under different SCs. We present 11 groups of test

Fig. 2 Qualitative analysis of our method’s performance at the different SCs. Input, raw image
captured by CMOS1. Output, image processed by the network. (a)–(k) Different SCs:
(a) D ¼ f 1, SC is 0.494; (b) D ¼ 1.1f 1, SC is 0.475; (c) D ¼ 1.2f 1, SC is 0.442; (d) D ¼ 1.3f 1,
SC is 0.419; (e) D ¼ 1.4f 1, SC is 0.393; (f) D ¼ 1.5f 1, SC is 0.368; (g) D ¼ 1.6f 1, SC is
0.337; (h) D ¼ 1.7f 1, SC is 0.311; (i) D ¼ 1.8f 1, SC is 0.285; (j) D ¼ 1.9f 1, SC is 0.25; and
(k) D ¼ 2f 1, SC is 0.245. D means the distance between L1 and RD in the LPR and f 1 is the
focal length of L1. Our method can achieve improved image quality under low SC (Video 1,
MP4, 1.5 MB [URL: https://doi.org/10.1117/1.AP.5.6.066003.s1]).
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results, each representing a different SC level and containing
samples from five distinct data sets. As described in Sec. 2,
the SC of the light source can be altered by adjusting the dis-
tance between RD and L1. It is evident that as the SC decreases,
the quality of holographic imaging deteriorates significantly, ex-
hibiting high levels of noise and blurriness. Simultaneously, the
decrease in SC corresponds to a reduction in light efficiency,
resulting in darker images that ultimately become indiscernible.
After processing through the trained network, these degraded

images become smoother, with improved sharpness, enhanced
details, and reduced noise. Remarkably, even in low SC condi-
tions where the original images captured by the CMOS1 sensor
lack any discernible details, our network successfully recon-
structs a significant portion of the elements. To accurately
evaluate the effectiveness of image restoration, we present the
evaluation indices (SSIM and PCC), comparing the original and
reconstructed images with respect to the ground truth for differ-
ent SCs [Fig. 1(f) and Table 1]. Other indices are provided in

Table 1 Quantitative analysis of evaluation indices (SSIM and PCC) at different SCs and test samplesa. f 1 is the focal length of L1.
SC means spatial coherence of the light source.

SC

SSIM PCC

BSD CelebA Flickr WED DIV BSD CelebA Flickr WED DIV

Input_f 1, SC = 0.494 0.5893 0.5943 0.4296 0.6155 0.4625 0.9368 0.9575 0.9210 0.9146 0.8753

Output_f 1 0.8984 0.8908 0.8523 0.9019 0.8940 0.9807 0.9893 0.9848 0.9930 0.9819

Input_1.3f 1, SC = 0.419 0.5775 0.5415 0.3917 0.6245 0.4184 0.8953 0.9303 0.8588 0.9149 0.8043

Output_1.3f 1 0.9189 0.8842 0.8676 0.8997 0.8918 0.9843 0.9928 0.9880 0.9928 0.9827

Input_1.5f 1, SC = 0.368 0.6178 0.5394 0.2777 0.5677 0.3892 0.8957 0.9211 0.8396 0.8961 0.8144

Output_1.5f 1 0.8906 0.8513 0.8171 0.8541 0.8622 0.9691 0.9881 0.9783 0.9869 0.9680

Input_1.7f 1, SC = 0.311 0.6040 0.5017 0.3183 0.5510 0.4136 0.8303 0.9035 0.8511 0.8568 0.7979

Output_1.7f 1 0.8624 0.7791 0.7483 0.8013 0.8038 0.9644 0.9787 0.9702 0.9759 0.9583

Input_2f 1, SC = 0.245 0.4881 0.4469 0.3073 0.5271 0.3643 0.8072 0.8817 0.7557 0.8326 0.7196

Output_2f 1 0.8146 0.7540 0.6962 0.7722 0.7572 0.9431 0.9713 0.9505 0.9631 0.9341

Ground truth 1 1 1 1 1 1 1 1 1 1

aBold values indicate the better index.

Fig. 3 Average results of the evaluation indices for each test data set. The coherence is 0.368.
Results of other coherences are provided in Fig. S2 in the Supplementary Material. All evaluation
indices demonstrate that our method possesses strong image restoration ability under low SC.

Tong et al.: Harnessing the magic of light: spatial coherence instructed swin transformer for universal holographic imaging

Advanced Photonics 066003-6 Nov∕Dec 2023 • Vol. 5(6)

https://doi.org/10.1117/1.AP.5.6.066003.s01


Table S3 in the Supplementary Material. The quantitative results
further validate the significant improvement achieved in various
indicators of the reconstructed images compared to the original
ones, approaching the ground truth. Figure 3 illustrates the
average evaluation indices for each test set. Here only partial
results are shown; more detailed results are included in Fig.
S2 in the Supplementary Material. It can be seen that each evalu-
ation index of images has risen significantly compared to the

original images after being processed by the TWC-Swin
method, indicating a substantial improvement in the image qual-
ity. Moreover, the network demonstrates its robust generaliza-
tion capability by performing image restoration on multiple test
sets, which are beyond the scope of the training set. This implies
that our method has effectively learned the underlying patterns
in the data during training and can apply these patterns to unseen
data, resulting in successful image restoration.

Fig. 4 Qualitative analysis of our method’s performance across varying intensities of (a) oceanic
and (b) atmospheric turbulence. The network trained with coherence as physical prior information
can effectively overcome the impact of turbulence on imaging and improve image quality.
(O1)–(O5) mean oceanic turbulence phase and (A1)–(A5) mean atmospheric turbulence
phase. (O1) χt ¼ 10−9 K2∕s, coherence is 0.491. (O2) χt ¼ 10−7 K2∕s, coherence is 0.482.
(O3) χt ¼ 2 × 10−7 K2∕s, coherence is 0.447. (O4) χt ¼ 4 × 10−7 K2∕s, coherence is 0.404.
(O5) χt ¼ 10−6 K2∕s, coherence is 0.373. (A1) C2

n ¼ 10−14 m3−α, coherence is 0.507.
(A2) C2

n ¼ 1.5 × 10−13 m3−α, coherence is 0.459. (A3) C2
n ¼ 2.5 × 10−13 m3−α, coherence is 0.43.

(A4) C2
n ¼ 3.5 × 10−13 m3−α, coherence is 0.403. (A5) C2

n ¼ 5 × 10−13 m3−α, coherence is
0.378. Other parameter settings of the turbulent power spectrum function can be found in
Table S2 in the Supplementary Material (Video 2, MP4, 36.4 MB [URL: https://doi.org/
10.1117/1.AP.5.6.066003.s2]).
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3.2 Performance on Oceanic Turbulence and
Atmospheric Turbulence

Owing to the stochastic variations of the refractive index within
oceanic and atmospheric turbulence, the phase information of
light beams becomes distorted, thereby reducing SC and degrad-
ing the quality of computational holography images. This issue
can be effectively addressed using the TWC-Swin method. It
should be mentioned that all images captured under turbulent
scenes were never trained by the network. Figure 4 demonstrates
the remarkable image restoration capability of TWC-Swin
method under varying intensities of oceanic and atmospheric
turbulence. As discussed in Sec. 2, the turbulence intensity de-
pends on certain variates of the power spectrum function, where
stronger turbulence presents more complex simulated turbu-
lence phases, as shown in Figs. 4(A5) and 4(O5). We carried

out experiments under five distinct intensities of both oceanic
and atmospheric turbulence, and simultaneously measured the
SC of the light source for selecting the optimal model. It should
be noted that the turbulence phase loaded on the SLM is con-
tinuously refreshed (20 Hz). To provide stronger evidence, we
present the evaluation indices (SSIM and PCC) for oceanic and
atmospheric turbulence in Tables 2 and 3 and Fig. 1(h), whereas
additional indices (MSE and PSNR) can be found in Tables S4
and S5 in the Supplementary Material. Our analysis concluded
that as the turbulence intensity increases, the SC experiences a
downturn, which subsequently degrades image quality.
Nevertheless, our proposed method is capable of overcoming
these adverse effects and effectively improving the image qual-
ity regardless of the turbulence intensity. Our model learns the
universal features of image degradation and restoration that de-
pend on SC. This further demonstrates the strong generalization

Table 2 Quantitative analysis of evaluation indices (SSIM and PCC) at different oceanic turbulence intensitiesa.

Oceanic turbulence

SSIM PCC

BSD CelebA Flickr WED DIV BSD CelebA Flickr WED DIV

Input (O1) 0.5331 0.6773 0.6810 0.6016 0.7018 0.8978 0.9404 0.8876 0.9096 0.8718

Output (O1) 0.8088 0.7916 0.8368 0.8077 0.8172 0.9303 0.9707 0.9334 0.9560 0.9044

Input (O2) 0.5098 0.6566 0.6690 0.5716 0.5371 0.8855 0.9329 0.8786 0.8970 0.8494

Output (O2) 0.7823 0.7609 0.8015 0.7819 0.8005 0.9211 0.9611 0.9209 0.9448 0.8901

Input (O3) 0.4950 0.6538 0.6575 0.5455 0.5281 0.8764 0.9313 0.8585 0.8916 0.8371

Output (O3) 0.7191 0.7169 0.8434 0.7378 0.7984 0.8896 0.9413 0.8871 0.9344 0.8793

Input (O4) 0.4796 0.6408 0.6474 0.5034 0.5074 0.8774 0.9245 0.8576 0.8664 0.8130

Output (O4) 0.7060 0.6932 0.7287 0.6718 0.7217 0.8847 0.9379 0.8835 0.8892 0.8213

Input (O5) 0.4519 0.6041 0.6202 0.4446 0.4945 0.8456 0.9075 0.8287 0.8281 0.7631

Output (O5) 0.6899 0.6721 0.7225 0.6286 0.6958 0.8909 0.9415 0.8888 0.8839 0.8152

Ground truth 1 1 1 1 1 1 1 1 1 1

aBold values indicate the better index.

Table 3 Quantitative analysis of evaluation indices (SSIM and PCC) at different atmospheric turbulence intensitiesa.

Atmospheric turbulence

SSIM PCC

BSD CelebA Flickr WED DIV BSD CelebA Flickr WED DIV

Input (A1) 0.5738 0.6821 0.6988 0.6495 0.6338 0.9014 0.9404 0.8929 0.9160 0.9766

Output (A1) 0.7798 0.7741 0.8337 0.8161 0.8231 0.9361 0.9564 0.9215 0.9574 0.9116

Input (A2) 0.5311 0.6513 0.6727 0.5743 0.5701 0.8797 0.9264 0.8676 0.8896 0.8279

Output (A2) 0.7312 0.6938 0.7699 0.6960 0.7581 0.8920 0.9353 0.8924 0.9141 0.8643

Input (A3) 0.5083 0.6383 0.6785 0.5348 0.5720 0.8688 0.9202 0.8493 0.8747 0.8081

Output (A3) 0.6615 0.6797 0.7427 0.6362 0.7369 0.8843 0.9392 0.8708 0.8919 0.8418

Input (A4) 0.4965 0.6264 0.6635 0.5202 0.5575 0.8590 0.9161 0.8364 0.8673 0.8040

Output (A4) 0.6915 0.6751 0.7287 0.6336 0.7273 0.8789 0.9308 0.8705 0.8855 0.8331

Input (A5) 0.4959 0.6153 0.6595 0.4840 0.5407 0.8524 0.9080 0.8263 0.8493 0.7862

Output (A5) 0.6761 0.6893 0.7201 0.6127 0.6802 0.8719 0.9465 0.8875 0.8749 0.8255

Ground truth 1 1 1 1 1 1 1 1 1 1

aBold values indicate the better index.
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capability of the network trained with SC as physical prior in-
formation and the ability to apply learned knowledge from the
training set to new, unseen scenes. This versatility is a desirable
trait in a neural network, as it suggests the method’s potential for
broad application.

3.3 Comparison between Different Methods and
Ablation Study

In this section, we conduct a comprehensive comparative study
of different methodologies, assessing their performance and

Fig. 5 Visualization of performance of different methods. The SSIM is shown in the bottom left
corner. Our method presents the best performance, which is shown by smoother images with
lower noise. (a) Sample selected with the WED data set and magnified insets of the red bounding
region. (b) Sample selected with Flickr data set and magnified insets of the red bounding region.
The pure swin model can be obtained by removing the postprocessing block of the swin model
(Video 3, MP4, 0.6 MB [URL: https://doi.org/10.1117/1.AP.5.6.066003.s3]).

Fig. 6 Performance between different methods on various data sets with SC being 0.494. Our
model outperforms other methods across various data sets and indices.
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efficacy in restoring images under challenging conditions of low
SC and turbulent scenes. Traditional convolution-fusion frame-
work methods, U-net,42 and U-RDN13 were compared to dem-
onstrate the power of the proposed swin model.

In our network architecture, the swin transformer serves as a
robust backbone module, responsible for extracting high-level
features from input. The special working mechanism gives it
powerful hierarchical representation and global perception capa-
bilities. However, direct output from the swin transformer often
exhibits artifacts and high-noise levels in image restoration
tasks. Therefore, it is necessary to add lightweight convolutional
layers as postprocessing blocks. Convolution layers capture
local features of the image through local receptive fields, aiding
in a better understanding of image details and textures while
facilitating mapping from high-dimensional to low-dimensional
spaces, resulting in high-quality output. To validate the effec-
tiveness of the postprocessing block in the swin model, we con-
duct an ablation study. In the ablation study, we created a control
group named pure swin, which was obtained by removing the
postprocessing block from the swin model. The training proc-
esses and data sets of all methods are consistent. Figure 5 shows
detailed comparisons of images processed by various methods.
Figure 6 illustrates the quantitative results between different
methods on various data sets. More qualitative results are pro-
vided in Figs. S3 and S4 in the Supplementary Material.
Comparing the visual output results of pure swin and the swin
model, we found that the output results of the pure swin frame-
work will produce black spots, resulting in blurred perception;

the SSIM is 0.8396, a 7% reduction. This is because the swin
transformer lacks the ability to sense local features and dimen-
sional mapping. Convolutional layers can fill this gap by offer-
ing a mechanism to refine and enhance local features past the
swin transformer blocks. The ablation study (compared with
pure swin) validates that the postprocessing module is indispen-
sable for the swin model.

We tested the performance of other networks under the same
conditions. Our proposed network outperforms other methods
by presenting the lowest noise and best evaluation index.
Tables S6 and S7 in the Supplementary Material provide a de-
tailed quantitative comparison of the performance across differ-
ent models and different SCs. In the task of image restoration
under low SC, our proposed methodology exhibits superior
performance across all evaluative indices when juxtaposed with
alternative approaches. Figure 7 shows the comparative perfor-
mance of various methods when faced with image degradation
due to various turbulence types and intensities. We observed that
all networks trained with SC exhibit the ability to significantly
improve the image quality under turbulent scenes and not just
the swin model. This is an exciting result, as it signifies the suc-
cessful integration of physical prior information into network
training, enabling the networks to be applied to multiple tasks
and scenarios.

4 Conclusions
By leveraging the SC as physical prior information and harnessing
advanced deep-learning algorithms, we proposed a methodology,

Fig. 7 (a), (b) Performance comparison between different methods at various turbulent scenes.
(A1) C2

n ¼ 10−14 m3−α, coherence is 0.506. (A2) C2
n ¼ 1.5 × 10−13 m3−α, coherence is 0.459.

(O1) χt ¼ 10−9 K2∕s, coherence is 0.491. (O2) χt ¼ 10−7 K2∕s, coherence is 0.482. Note that
all methods are trained with coherence as physical prior information and improve image quality
under turbulence conditions. This demonstrates that incorporating appropriate physical prior
information can help the network cope with multiscene tasks.
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TWC-Swin, which demonstrates exceptional capabilities in si-
multaneously restoring images in low SC and random turbulent
scenes. Our multicoherence and multiturbulence holographic
imaging data sets, consisting of natural images, are created
by the LPR, which can simulate different SCs and turbulence
scenes (see Sec. 2). Though the swin model used in the tests
was trained solely on the multicoherence data set, it can achieve
promising results on both low SC, oceanic turbulence and
atmospheric turbulence scenes. The key is that we capture
the common physical property in these scenes, SC, and use
it as physical prior information to generate a training set, so that
the TWC-Swin method exhibits remarkable generalization
capabilities, effectively restoring images from unseen scenes be-
yond the training set. Furthermore, through a series of rigorous
experiments and comparisons, we have established the superi-
ority of the swin model over traditional convolutional frame-
works and alternative methods in terms of image restoration
from qualitative and quantitative analysis (see Sec. 3). The in-
tegration of SC as a fundamental guiding principle in network
training has proven to be a powerful strategy in aligning down-
stream tasks with pretrained models.

Our research findings offer guidance not only for the domain
of optical imaging but also for the integration with the segment
anything model (SAM),43 extending its applicability to multiphy-
sics scenarios. For instance, in turbulent scenes, our methodology
can be implemented for preliminary image processing, enabling
the utilization of unresolved images for precise image recogni-
tion and segmentation tasks facilitated by SAM. Moreover, our
experimental scheme also provides a simple idea for turbulence
detection. Our research contributes valuable insights into the use
of deep-learning algorithms for addressing image degradation
problems in multiple scenes and highlights the importance of
incorporating physical principles into network training. It is
foreseeable that our research can serve as a successful case for
the combination of deep learning and holographic imaging in
the future, which facilitates the synergistic advancement of the
fields of optics and computer science.

Code and Data Availability
The codes of the TWC-Swin method, trained model, as well as
some example images for testing, are publicly available at
https://github.com/tongxinoptica/TWC-Swin. All relevant data
that support the findings of this work are available from the
corresponding author upon reasonable request. The parameter
settings of TWC-Swin used in synthesizing the training and
evaluation data sets will be publicly available along with this
paper.
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